8 research outputs found

    Active inference, eye movements and oculomotor delays.

    Get PDF
    This paper considers the problem of sensorimotor delays in the optimal control of (smooth) eye movements under uncertainty. Specifically, we consider delays in the visuo-oculomotor loop and their implications for active inference. Active inference uses a generalisation of Kalman filtering to provide Bayes optimal estimates of hidden states and action in generalised coordinates of motion. Representing hidden states in generalised coordinates provides a simple way of compensating for both sensory and oculomotor delays. The efficacy of this scheme is illustrated using neuronal simulations of pursuit initiation responses, with and without compensation. We then consider an extension of the generative model to simulate smooth pursuit eye movements-in which the visuo-oculomotor system believes both the target and its centre of gaze are attracted to a (hidden) point moving in the visual field. Finally, the generative model is equipped with a hierarchical structure, so that it can recognise and remember unseen (occluded) trajectories and emit anticipatory responses. These simulations speak to a straightforward and neurobiologically plausible solution to the generic problem of integrating information from different sources with different temporal delays and the particular difficulties encountered when a system-like the oculomotor system-tries to control its environment with delayed signals

    Smooth pursuit and visual occlusion: active inference and oculomotor control in schizophrenia.

    Get PDF
    This paper introduces a model of oculomotor control during the smooth pursuit of occluded visual targets. This model is based upon active inference, in which subjects try to minimise their (proprioceptive) prediction error based upon posterior beliefs about the hidden causes of their (exteroceptive) sensory input. Our model appeals to a single principle--the minimisation of variational free energy--to provide Bayes optimal solutions to the smooth pursuit problem. However, it tries to accommodate the cardinal features of smooth pursuit of partially occluded targets that have been observed empirically in normal subjects and schizophrenia. Specifically, we account for the ability of normal subjects to anticipate periodic target trajectories and emit pre-emptive smooth pursuit eye movements--prior to the emergence of a target from behind an occluder. Furthermore, we show that a single deficit in the postsynaptic gain of prediction error units (encoding the precision of posterior beliefs) can account for several features of smooth pursuit in schizophrenia: namely, a reduction in motor gain and anticipatory eye movements during visual occlusion, a paradoxical improvement in tracking unpredicted deviations from target trajectories and a failure to recognise and exploit regularities in the periodic motion of visual targets. This model will form the basis of subsequent (dynamic causal) models of empirical eye tracking measurements, which we hope to validate, using psychopharmacology and studies of schizophrenia

    Revisiting horizontal connectivity rules in V1: from like-to-like towards like-to-all

    No full text
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordHorizontal connections in the primary visual cortex of carnivores, ungulates and primates organize on a near-regular lattice. Given the similar length scale for the regularity found in cortical orientation maps, the currently accepted theoretical standpoint is that these maps are underpinned by a like-to-like connectivity rule: horizontal axons connect preferentially to neurons with similar preferred orientation. However, there is reason to doubt the rule's explanatory power, since a growing number of quantitative studies show that the like-to-like connectivity preference and bias mostly observed at short-range scale, are highly variable on a neuron-to-neuron level and depend on the origin of the presynaptic neuron. Despite the wide availability of published data, the accepted model of visual processing has never been revised. Here, we review three lines of independent evidence supporting a much-needed revision of the like-to-like connectivity rule, ranging from anatomy to population functional measures, computational models and to theoretical approaches. We advocate an alternative, distance-dependent connectivity rule that is consistent with new structural and functional evidence: from like-to-like bias at short horizontal distance to like-to-all at long horizontal distance. This generic rule accounts for the observed high heterogeneity in interactions between the orientation and retinotopic domains, that we argue is necessary to process non-trivial stimuli in a task-dependent manner.CNSAMUAN

    Visual search as active inference

    No full text
    International audienceVisual search is an essential cognitive ability, offering a prototypical control problem to be addressed with Active Inference. Under a Naive Bayes assumption, the maximization of the information gain objective is consistent with the separation of the visual sensory flow in two independent pathways, namely the "What" and the "Where" pathways. On the "What" side, the processing of the central part of the visual field (the fovea) provides the current interpretation of the scene, here the category of the target. On the "Where" side, the processing of the full visual field (at lower resolution) is expected to provide hints about future central foveal processing given the potential realization of saccadic movements. A map of the classification accuracies, as obtained by such counterfactual saccades, defines a utility function on the motor space, whose maximal argument prescribes the next saccade. The comparison of the foveal and the peripheral predictions finally forms an estimate of the future information gain, providing a simple and resource-efficient way to implement information gain seeking policies in active vision. This dual-pathway information processing framework is found efficient on a synthetic visual search task with a variable (eccentricity-dependent) precision. More importantly, it is expected to draw connections toward a more general actor-critic principle in action selection, with the accuracy of the central processing taking the role of a value (or intrinsic reward) of the previous saccade
    corecore